如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点. (1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点
问题描述:
如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
答
(1)证明:连接AM,过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q,即AQ∥DP,∵AD∥BC,∴四边形ADPQ是平行四边形,∴AD=QP=AB=CD,∵∠C=∠B=60°,∴∠BAQ=∠CDP=30°,∴CP=BQ=12AB=1,即BC=1+1+2=4,∵CD=2,∴BC=2...