已知函数f(x)=2cos2x+(sinx)^2,求函数的最大值和最小值
问题描述:
已知函数f(x)=2cos2x+(sinx)^2,求函数的最大值和最小值
答
f(x)=2cos2x+(sinx)^2
=2-4sin^2x+sin^2x
=2-3sin^2x
因此最大值当sinx=0时,y=2
最小值当sinx=±1时,y=-1