2cos²θ+sin²(2π-θ)+sin(π/2+θ)-3/2+2sin²(π/2+θ)-sin(3π/2-θ),求f(π/3)的值

问题描述:

2cos²θ+sin²(2π-θ)+sin(π/2+θ)-3/2+2sin²(π/2+θ)-sin(3π/2-θ),求f(π/3)的值

2cos²θ+sin²(2π-θ)+sin(π/2+θ)-3/2+2sin²(π/2+θ)-sin(3π/2-θ)=2cos²θ+sin²θ+cosθ - 3/2 +2cos²θ- cosθ=3cos²θ - 1/2先化简到这里,不知道题目中上式与函数值f(π/...问题补充一下,【2cos²θ+sin²(2π-θ)+sin(π/2+θ)-3】/【2+2sin²(π/2+θ)-sin(3π/2-θ)】,求f(π/3)的值。 现在再多加两个大括号,以便区分除号。f(θ)=【2cos²θ+sin²(2π-θ)+sin(π/2+θ)-3】/【2+2sin²(π/2+θ)-sin(3π/2-θ)】?若是,那么解题如下:f(θ)=【2cos²θ+sin²(2π-θ)+sin(π/2+θ)-3】/【2+2sin²(π/2+θ)-sin(3π/2-θ)】=(2cos²θ+sin²θ+cosθ - 3)/(2 +2cos²θ- cosθ)=(cos²θ+cosθ - 2)/(2 +2cos²θ- cosθ)=(cosθ+2)(cosθ-1)/[2+cosθ(2cosθ-1)]因为cos(π/3)=1/2,所以:f(π/3)=(1/2 +2)(1/2 -1)/2=(5/2)*(-1/2)/2=-5/8