证明:任意奇次项实系数多项式必有根?

问题描述:

证明:任意奇次项实系数多项式必有根?
这里用的是介值定理解答的!
怎么证明lim(x→-∞)f(x)=+∞
lim(x→+∞)f(x)=-∞的

证明:设f(x)=anx^n+a(n-1)x^(n-1)+...+a1x+a0(其中n为奇数)
明显有f(x)为连续函数
当an>0时有:
lim(x→-∞)f(x)=-∞
lim(x→+∞)f(x)=+∞
由于f(x)是连续函数,所以f(x)至少有一个0点
即f(x)至少有一个实数根.
当an