如图①,将一个量角器与一张等腰三角形(△ABC)纸片放置成轴对称图形.∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5cm;将量角器沿DC方向平移2cm,半圆(量角器
问题描述:
如图①,将一个量角器与一张等腰三角形(△ABC)纸片放置成轴对称图形.∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5cm;将量角器沿DC方向平移2cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图②.则AB的边长为______cm.(精确到0.1cm)
答
如图,设图②中半圆的圆心为O,与BC的切点为M,
连接OM,
则OM⊥MC,
∴∠OMC=90°,
依题意知道∠DCB=45°,
设AB为2x,
∵△ABC是等腰直角三角形,
∴CD=BD=x,
而CE=5cm,又将量角器沿DC方向平移2cm,
∴半圆的半径为x-5,OC=x-2,
∴sin∠DCB=
=OM CO
,
2
2
∴
=x−5 x−2
,
2
2
∴x=
,10−2
2
2−
2
∴AB=2x=2×
≈24.5(cm).10−2
2
2−
2
故答案为:24.5.