复数(根号3 -i)/(1+根号3i)=

问题描述:

复数(根号3 -i)/(1+根号3i)=

(√3 -i)/(1+√3i)
=(√3 -i)(1-√3i)/(1+√3i)(1-√3i)
=(√3-√3-i-3i ) / ( 1 + 3 )
= - i
(1+根号3i)/(根号3 -i) 刚好为上面的倒数
因此=1/(-i) = i / (-i*i) = i
o(∩_∩)o