已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上单调递减,设a=f(0),b=f(2),c=f(-1),则( ) A.a<c<b B.a<b<c C.b<c<a D.c<b<a
问题描述:
已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上单调递减,设a=f(0),b=f(2),c=f(-1),则( )
A. a<c<b
B. a<b<c
C. b<c<a
D. c<b<a
答
解;∵函数y=f(x)是偶函数,
∴函数f(x)关于y轴对称,
将y=f(x)向右平移2个单位得到y=f(x-2),
∵y=f(x-2)在[0,2]上单调递减,
∴y=f(x)在[-2,0]上单调递减,
则f(2)=f(-2),
∴f(0)<f(-1)<f(-2),
即a<c<b,
故选:A.