定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)={f(x)-f(-x)}/2+{f(x)+f(-x)}/2.怎么理解啊,能给个详细步骤吗.
问题描述:
定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)={f(x)-f(-x)}/2+{f(x)+f(-x)}/2.怎么理解啊,能给个详细步骤吗.
答
任意函数f(x),构造两个函数,g(x),h(x) 其中,g(x)=(f(x)-f(-x))/2 h(x)=(f(x)+f(-x))/2 由于g(-x)=(f(-x)-f(x))/2=-g(-x) h(-x)=(f(-x)+f(x))/2=h(x) 所以g(x)为奇函数,h(x)为偶函数 g(x)+h(x)=(f(x)-f(-x))/2 + (f(x...