设函数f(x)=-1/3x3+x2+(m2-1)x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间.

问题描述:

设函数f(x)=-

1
3
x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间.

(1)当m=1时,f(x)=-

1
3
x3+x2,f′(x)=-x2+2x,故f′(1)=1.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m,或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,1-m) 1-m (1-m,1+m) 1+m (1+m,+∞)
f′(x) - 0 + 0 -
f(x) 递减 极小值 递增 极大值 递减
所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.