已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(3π4,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.

问题描述:

已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(

4
,0)对称,且在区间[0,
π
2
]
上是单调函数,求φ和ω的值.

由f(x)是偶函数,得f(-x)=f(x),
即sin(-ωx+φ)=sin(ωx+φ),
所以-cosφsinωx=cosφsinωx,
对任意x都成立,且w>0,
所以得cosφ=0.
依题设0≤φ≤π,所以解得φ=

π
2

由f(x)的图象关于点M对称,
f(
4
−x)=−f(
4
+x)

取x=0,得f(
4
)=sin(
3ωπ
4
+
π
2
)=cos
3ωπ
4

∴f(
4
)=sin(
3ωπ
4
+
π
2
)=cos
3ωπ
4

∴cos
3ωπ
4
=0,
又w>0,得
3ωπ
4
=
π
2
+kπ,k=0,1,2,3,…
∴ω=
2
3
(2k+1),k=0,1,2,…
当k=0时,ω=
2
3
,f(x)=sin(
2
3
x+
π
2
)在[0,
π
2
]上是减函数,满足题意;
当k=1时,ω=2,f(x)=sin(2x+
π
2
)=cos2x,在[0,
π
2
]上是减函数,满足题意;
当k=2时,ω=
10
3
,f(x)=sin(
10
3
x+
π
2
)在[0,
π
2
]上不是单调函数;
所以,综合得ω=
2
3
或2.