若二次函数f(x)=ax2+2ax+1在区间[-3,2]上的最大值为4,则实数a的值为(  )A. 38或-3B. -1C. 38D. -1或38

问题描述:

若二次函数f(x)=ax2+2ax+1在区间[-3,2]上的最大值为4,则实数a的值为(  )
A.

3
8
或-3
B. -1
C.
3
8

D. -1或
3
8

根据所给二次函数解析式可知,对称轴为x=-1,且恒过定点(0,1),(1)当a<0时,函数在[-3,-1]上单调递增,在[-1,2]上单调递减,所以函数在x=-1处取得最大值,因为f(-1)=-a+1=4,所以a=-3.(2)当a>0时,函...
答案解析:根据函数解析式确定函数对称轴和定点,数形结合确定最大值点,建立等量关系求解a.
考试点:二次函数的性质.
知识点:本题考察二次函数的性质,对于给出最值求参题目,一般要结合题中所给解析式大致确定函数图象、分类讨论来研究.