关于反函数的二阶导数问题,
问题描述:
关于反函数的二阶导数问题,
请先认真看完我的问题再回答
就是我们在学高阶导数的时候一道例题里提出的关于反函数二阶导数的问题,关于书上的解答我没怎么看懂,问老师,我还是没怎么听明白,就是想谁帮我详细的用这个方法求一下
y=e^x的反函数的二阶导数是什么,按照正确方法来说应该是(-1)y''/(y')^3,请不要照搬书上的原话,我想听一下自己的意见,我已经纠结这个问题好久了,还有就是像我这样学到高阶导数的人有必要挖掘到这种地步,还是知道怎么求就行,
答
必须理解,解决这类问题,必须回答这些问题:1、这个函数是关于谁为自变量的函数(在多元函数求偏导很重要)2、你是在对谁求导,要明确(别小看这,做着做着你就会忘记)y=e^x的反函数的二阶导数是什么?(-1)y''/(y')^3,?...一维的不存在这些,二维以上的才存在一维的情况,高中就学过,大学还不会么?这么说吧,你的那个是个复合函数,懂不,要分两次求,而且要记住的是y'的自变量仍然是x;这个很简单的,不懂继续问,我不信讲不懂你d(1/y')/dy表示的是1/y'这函数对y求导,虽然它是关于x的自变量,告诉你1/y'还可以对z,m,c,p。。。对什么都行;因为z有可能又与x产生联系;1/y')'=(y'^(-1))'=(y')'(-1)(y')^(-2)=-y''/y'^2 这个是对的~