如图所示,AB=AD,AC=AE,∠DAB=∠CAE,BE与DC交于点P.求证:PA平分∠DPE.
问题描述:
如图所示,AB=AD,AC=AE,∠DAB=∠CAE,BE与DC交于点P.求证:PA平分∠DPE.
答
证明:过点A分别作AM⊥DP,垂足为点M,AN⊥PE,垂足为点N,∵∠DAB=∠CAE(已知),∴∠DAB+∠BAC=∠CAE+∠BAC(等式的性质),即∠DAC=∠BAE.在△ADC和△ABE中,∵AB=AD,∠DAC=∠BAE.AC=AE,∴△ADC≌△ABE(SAS...