已知二次函数f(x)对任意实数x恒满足f(x-1)=*x^2+2x,求f(x)

问题描述:

已知二次函数f(x)对任意实数x恒满足f(x-1)=*x^2+2x,求f(x)

另u=x-1,则x=u+1,f(x-1)=f(u)=x^2+2x=(u+1)^2+2(u+1)=u^2+4u+3
所以f(u)=u^2+4u+3即f(x)=x^2+4x+3

f(x-1)=x^2+2x
f(x-1)=x^2-2x+1+4x-4+3
f(x-1)=(x-1)^2+4(x-1)+3
f(x)=x^2+4x+3

f(x-1)=x^2+2x=(x+1)²-1=[(x-1)+2]²-1
所以,f(x)=(x+2)²-1