x=(y,z),y=(x,z),z=z(x,y)是F(x,y,z)=0所确定的具连续偏导数的函数,证明x对y偏导*y对z偏导*z对x偏导=-1

问题描述:

x=(y,z),y=(x,z),z=z(x,y)是F(x,y,z)=0所确定的具连续偏导数的函数,证明x对y偏导*y对z偏导*z对x偏导=-1

x=f(y,z)时
δF/δy=F'1*δx/δy+F'2=0
即:δx/δy=-F'2/F'1
同理:δy/δz=-F'3/F'2,δz/δx=-F'1/F'3
故(δx/δy)*(δy/δz)*(δz/δx)
=(-F'2/F'1)*(-F'3/F'2)*(-F'1/F'3)=-1