(2000•河南)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.

问题描述:

(2000•河南)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.

证明:∵△ABC是等腰直角三角形,CH⊥AB,
∴AC=BC,∠ACH=∠CBA=45°.
∵CH⊥AB,AE⊥CF,
∴∠EDH+∠HGE=180°.
∵∠AGC=∠HGE,∠HDE+∠CDB=180°,
∴∠AGC=∠CDB.
在△AGC和△CDB中,

∠ACG=∠CBD
∠AGC=∠CDB
AC=CB

∴△AGC≌△CDB(AAS).
∴BD=CG.