已知双曲线的两个焦点为F1,F2,虚轴的一个、端点B,且角F1BF2=2π/3,求此双曲线的离心率

问题描述:

已知双曲线的两个焦点为F1,F2,虚轴的一个、端点B,且角F1BF2=2π/3,求此双曲线的离心率

设原点为o,由题意得角OBF2=π/3,又因为三角形OBF2是直角三角形,OB=b,OF2=c,所以OF2/OB=c/b=TANπ/3=根号3,即c=根号3b,c的平方=3b的平方=3(c的平方-a的平方),合并同类项得2c的平方=3a的平方,所以c/a=3/2开方.即e=3/2开方