已知:关于x的方程x2+(k-2)x+k-3=0(1)求证:方程x2+(k-2)x+k-3=0总有实数根;(2)若方程x2+(k-2)x+k-3=0有一根大于5且小于7,求k的整数值;(3)在(2)的条件下,对于一次函数y1=x+b和二次函数y2=x2+(k-2)x+k-3,当-1<x<7时,有y1>y2,求b的取值范围.
问题描述:
已知:关于x的方程x2+(k-2)x+k-3=0
(1)求证:方程x2+(k-2)x+k-3=0总有实数根;
(2)若方程x2+(k-2)x+k-3=0有一根大于5且小于7,求k的整数值;
(3)在(2)的条件下,对于一次函数y1=x+b和二次函数y2=x2+(k-2)x+k-3,当-1<x<7时,有y1>y2,求b的取值范围.
答
(1)证明:△=(k-2)2-4(k-3)=k2-4k+4-4k+12=k2-8k+16,=(k-4)2,∵(k-4)2≥0,∴此方程总有实根;(2)解得方程两根为,x1=-1,x2=3-k,∵方程有一根大于5且小于7,∴5<3-k<7,即-7<k-3<-5,解得-4<k...
答案解析:(1)利用一元二次方程根的判别式进行判定即可;
(2)解方程得到方程的两个根,然后根据含有字母k的根即为大于5且小于7的根,列出不等式组,求解得到k的取值范围,再写出整数值即可;
(3)把k值代入得到二次函数解析式,再根据y1>y2整理出关于x的一元二次不等式,然后利用二次函数的性质可知,二次函数与x轴的交点横坐标在-1到7之外,再根据两个负数相比较,绝对值大的反而小列出不等式求解即可.
考试点:二次函数综合题.
知识点:本题是二次函数综合题型,主要涉及了一元二次方程的根的情况的判定,解一元二次方程,解不等式组,以及利用二次函数解一元二次不等式的方法,(3)根据x的取值范围判断出二次函数与x轴的交点在-1到7之外是解题的关键.