求当m是什么实数时,关于x,y的方程(2m^2+m-1)x^2+(m^2-m+2)y^2+m+2=0的图象表示一个圆?

问题描述:

求当m是什么实数时,关于x,y的方程(2m^2+m-1)x^2+(m^2-m+2)y^2+m+2=0的图象表示一个圆?

首先,2m^2+m-1=m^2-m+2而且它们均不为0,另外m+2/2m^2+m-1要小于0,只有这样原方程可以化为x^2+y^2=r^2(r大于0)的形式,表示一个圆心在原点的圆.解关于m的方程,得到 m=-1,m=3.