设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),则g(a)= _ .

问题描述:

设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),则g(a)= ___ .

由于函数y=x2-2x=(x-1)2-1 的对称轴为x=1,当x∈[-2,a]时,函数的最小值为g(a),
∴当-2<a≤1时,函数在[-2,a]上是减函数,故最小值为g(a)=a2-2a,满足条件.
当a>1时,函数在[-2,1]上是减函数,在[1,a]上是增函数,故最小值为g(1)=-1.
综上可得,g(a)=

a2-2a,-2<a≤1
-1,a>1
.,
故答案为:
a2-2a,-2<a≤1
-1,a>1