高数极限证明题.证明Yn=1/(1*2)+1/(2*3)+…+1/[n(n+1)]极限为1

问题描述:

高数极限证明题.
证明Yn=1/(1*2)+1/(2*3)+…+1/[n(n+1)]极限为1

首先, 1/[n(n+1)]=1/n-1/(n+1)
所以Yn=1-1/2+1/2-1/3+1/3-.....-1/n+1/n-1/(n+1)=1-1/(n+1)

所以lim Yn=1

Yn=1/(1*2)+1/(2*3)+…+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)+....(1/n-1/(n+1))
=1- 1/(n+1) 极限为1

Yn=1/(1*2)+1/(2*3)+…+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)...+(1/n-1/(n+1))
=1-1/(n+1)
所以n趋于∞时极限为1