零点存在定理:如果连续函数f(x)在区间[a,b]上存在零点,则f(a)f(b)≤0为什么这里是小于等于0,书上不是小于0吗?
问题描述:
零点存在定理:如果连续函数f(x)在区间[a,b]上存在零点,则f(a)f(b)≤0
为什么这里是小于等于0,书上不是小于0吗?
答
零点存在定理:如果连续函数f(x)在区间[a,b]上存在零点,则f(a)f(b)≤0
为什么这里是小于等于0,书上不是小于0吗?