关于x的方程kx的²+(2k+1)x+(k-1)=0有实数根则k的值等于?

问题描述:

关于x的方程kx的²+(2k+1)x+(k-1)=0有实数根则k的值等于?

方程有实数根则Δ=b²-4ac≥0
Δ=b²-4ac=(2k+1)²-4k(k-1)=4k+4k=8k≥0
k≥0

因为有实数根
所以判别式≥0
即 (2k+1)²-4k(k-1)≥0
4K²+4K+1-4k²+4k≥0
8k≥-1
k≤-1/8