设二元函数Z=e(xy)+xy2 ,则dZ=题中为e的xy次方,x乘y的平方…求导!

问题描述:

设二元函数Z=e(xy)+xy2 ,则dZ=
题中为e的xy次方,x乘y的平方…求导!

z=e^(xy)+xy^2
dz/dx=ye^(xy)+y^2
dz/dy=xe^(xy)+2xy
dz=(ye^(xy)+y^2)dx+(xe^(xy)+2xy)dy

二元函数Z=e(xy)+xy2 ,
则dZ= de(xy)+d(xy2)
=e^(xy)d(xy)+d(xy2)
=e^(xy)[xdy+ydx]+y2dx+2xydy
=[e^(xy)+y2]dx+[e^(xy)+2xy]dy

δz/δx=ye^(xy)+y^2
δz/δy=xe^(xy)+2xy
(δz/δx表示z对x的偏导)
所以dz=(δz/δx)dx+(δz/δy)dy
=(ye^(xy)+y^2)dx+(xe^(xy)+2xy)dy

dZ=xe(xy)dx+ye(xy)dy+y2dx+2xydy
=(xe(xy)+y^2)dx+(ye(xy)+2xy)dy