如图,在△ABC中,∠B=90°,AB=4cm,BC=10cm,点P从点B出发沿BC以1cm/s的速度向点C移动,问:经过多少秒后,点P到点A的距离的平方比点P到点B的距离的8倍大1?

问题描述:

如图,在△ABC中,∠B=90°,AB=4cm,BC=10cm,点P从点B出发沿BC以1cm/s的速度向点C移动,问:经过多少秒后,点P到点A的距离的平方比点P到点B的距离的8倍大1?

假设当P点移到E点时可满足本题的条件,那么就有△ABE为直角三角形,BE=PB,EA=PA,由题意得PA2-8PB=1,设经过x秒后点P到点A的距离的平方比点P到点B的距离的8倍大1,由题意得BE=PB=1×x=xcm,AE2=PA2=42+x2∴42+x2-8x...