已知函数f(x)=sin2x−cos2x+12sinx. (1)求f(x)的定义域和最大值; (2)设a是第一象限角,且tana/2=1/2,求f(a)的值.
问题描述:
已知函数f(x)=
.sin2x−cos2x+1 2sinx
(1)求f(x)的定义域和最大值;
(2)设a是第一象限角,且tan
=a 2
,求f(a)的值. 1 2
答
(1)由sinx≠0,得x≠kπ(k∈Z)…(2分),所以f(x)的定义域为{x|x∈R,x≠kπ,其中k∈Z}…(3分),f(x)=2sinxcosx+2sin2x2sinx=sinx+cosx=2sin(x+π4)…(7分),因为x≠kπ(k∈Z),所以f(x)的最大...