已知两圆x^2+y^2-2x+10y-24=0和x^2+y^2+2x+2y-8=0(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程(3)求公共弦的长度.
问题描述:
已知两圆x^2+y^2-2x+10y-24=0和x^2+y^2+2x+2y-8=0(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程
(3)求公共弦的长度.
答
联立方程有两解为相交,一解为相切,无解为相离.(1)-(2)-4x+18y-16=0 x=(9y-8)/2 代入(1) 得(9y-8)^2/4+y^2-(9y-8)+10y-24=0 解得y=0 y=70/17 代入x=(9y-8)/2 x=-4 x=247/17 两解为相交公共弦所在的直线方程为...