(x-1)(x+2)(x-3)(x+4)+24怎样用十字相乘法因式分解

问题描述:

(x-1)(x+2)(x-3)(x+4)+24怎样用十字相乘法因式分解

(x-1)(x+2)(x-3)(x+4)+24
=(x²+x-2)(x²+x-12)+24
然后令x²+x=a
(x²+x-2)(x²+x-12)+24
=(a-2)(a-12)+24
=(a²-14a+24)+24
=a²-14a+48
=(a-6)(a-8)代入x²+x=a
=(x²+x-6)(x²+x-8)
=(x+3)(x-2)(x²+x-8)


(x-1)(x+2)(x-3)(x+4)+24
=(x²+x-2)(x²+x-12)+24
=(x²+x)²-12(x²+x)-2(x²+x)+24+24
=(x²+x)²-14(x²+x)+48
=(x²+x-6)(x²+x-8) (此处利用十字相乘法了)
=(x+3)(x-2)(x²+x-8) (此处利用十字相乘法了)

先化开来
原式=(x^2+x-2)(x^2+x-12)+24
=(x^2+x)^2-14(x^2+x)+48
到这里在用十字相乘
=(x^2+x-6)(x^2+x-8)
=(x-2)(x+3)(X^2+X-8)

=(x^2+x-2)(x^2+x-12)+24
设 y=x^2+x
原式=
=(y-2)(y-12)+24
=y^2-14y+48
=(y-6)(y-8)
=(x^2+x-6)(x^2+x-8)
=.....