解方程(x-6)(x^2+x+1)-x(x+1)(x-1)=x(2-5x)
问题描述:
解方程(x-6)(x^2+x+1)-x(x+1)(x-1)=x(2-5x)
答
(x-6)(x^2+x+1)-x(x+1)(x-1)=x(2-5x)
=x(x^2+x+1)-6(x^2+x+1)-x(x^2-1)=2x-5x^2
=x^3+x^2+x-6x^2+6x+1-x^3+x=2x-5x^2
=-4x-6-5x^2=2x-5x^2
所以 -6=-6x
x=-1
答
去括号,整理得6x=-6
系数化为1,x=-1
答
(x-6)(x^2+x+1)-x(x+1)(x-1)=x(2-5x)
x^3+x^2+x-6x^2-6x-6-x^3+x=2x-5x^2
-4x-6=2x
6x=-6
x=-1
答
x(x^2+x+1)-6x^2-6x-6-x^3+x=2x-5x^2
-6x-6=0
x=-1