关于x的一元二次方程x2-mx+5(m-5)=0的两个正实数根分别为x1,x2,且2x1+x2=7,则m的值是(  )A. 2B. 6C. 2或6D. 7

问题描述:

关于x的一元二次方程x2-mx+5(m-5)=0的两个正实数根分别为x1,x2,且2x1+x2=7,则m的值是(  )
A. 2
B. 6
C. 2或6
D. 7

根据题意得x1+x2=m>0,x1•x2=5(m-5)>0,
则m>5,
∵2x1+x2=7,
∴m+x1=7,即x1=7-m,
∴x2=2m-7,
∴(7-m)(2m-7)=5(m-5),
整理得m2-8m+12=0,
(m-2)(m-6)=0,
解得m1=2,m2=6,
∵m>5,
∴m=6.
故选B.
答案解析:根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系和两根都为正根得到x1+x2=m>0,x1•x2=5(m-5)>0,则m>5,由2x1+x2=7得到m+x1=7,即x1=7-m,x2=2m-7,于是有(7-m)(2m-7)=5(m-5),然后解方程得到满足条件的m的值.
考试点:根与系数的关系.


知识点:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程的解法.