用mathematica作出z=Sqrt[1 - x^2 - y^2],x^2+y^2=x及xOy面围成的图形,谢谢~
问题描述:
用mathematica作出z=Sqrt[1 - x^2 - y^2],x^2+y^2=x及xOy面围成的图形,谢谢~
答
收费解决
答
p1 = Plot3D[Sqrt[1 - x^2 - y^2], {x, -1, 1}, {y, -1, 1},
AxesLabel -> {"x", "y", "z"},
RegionFunction ->
Function[{x, y}, x^2 + y^2 = x)]]
p2 = ContourPlot3D[
x^2 + y^2 == x, {x, 0, 1}, {y, -1/2, 1/2}, {z, 0, 1},
RegionFunction -> Function[{x, y, z}, Sqrt[1 - x^2 - y^2] >= z]]
p3 = ContourPlot3D[z == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1},
RegionFunction ->
Function[{x, y, z}, x^2 + y^2 = x]]
Show[p1, p2, p3]