已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sinA+sinB的值.
问题描述:
已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b
(1)试判断△ABC的形状;
(2)求sinA+sinB的值.
答
(1)方程整理为(c-a)x2+2bx+a+c=0,根据题意得△=4b2-4(c-a)(a+c)=0,∴a2+b2=c2,∴△ABC为直角三角形;(2)∵a2+b2=c2,3c=a+3b∴(3c-3b)2+b2=c2,∴(4c-5b)(c-b)=0,∴4c=5b,即b=45c,∴a=3c-3b=3...
答案解析:(1)先把方程整理为一般式,再根据判别式的意义得到△=4b2-4(c-a)(a+c)=0,则a2+b2=c2,然后根据勾股定理的逆定理判断三角形形状;
(2)由于a2+b2=c2,3c=a+3b,消去a得(3c-3b)2+b2=c2,变形为(4c-5b)(c-b)=0,则b=
c,a=4 5
c,根据正弦的定义得sinA=3 5
,sinB=a c
,所以sinA+sinB=b c
,然后把b=a+b c
c,a=4 5
c代入计算即可.3 5
考试点:根的判别式.
知识点:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了勾股定理的逆定理和锐角三角函数的定义.