一个动圆与已知圆O1:(x +3)^2+ y^2=1外切,与圆O2:(x-3)^2 y^2=81内切,试求动圆圆心轨迹方程.
问题描述:
一个动圆与已知圆O1:(x +3)^2+ y^2=1外切,与圆O2:(x-3)^2 y^2=81内切,试求动圆圆心轨迹方程.
答
设动圆圆心P(x,y),半径为r.又O1(-3,0),r1=1,O2(3,0),r2=9.由题设可知,|PO1|=r+r1=r+1.|PO2|=r2-r=9-r.故|PO1|+|PO2|=(r+1)+(9-r)=10.即动点P到两定点O1,O2的距离之和为定值10.由椭圆的定义可知,点P的轨迹是以O1,O2为焦点,长轴为10的椭圆,故其轨迹方程为(x²/25)+(y²/16)=1.