如图,在△ABC中,点D是BC的中点,AB=8,AC=根号2CD,求AD的长?
问题描述:
如图,在△ABC中,点D是BC的中点,AB=8,AC=根号2CD,求AD的长?
答
过D作DF平行于AB交AC于F
根据余弦定理: AB^2=BC^2+AC^2+2*BC*AC*cosC
8^2=4*CD^2+2*CD^2-4V2*CD^2*cosC
cosC=(6*CD^2-64)/(4v2CD^2)
又根据余弦定理:
AD^2=DC^2+AC^2-2*DC*AC*cosC=DC^2+2*DC^2-2V2*DC*DC*(6*CD^2-64)/(4v2CD^2)
=3DC^2-(3DC^2-32)=32
AD=V32=4V2
答
由CD/AC=AC/BC,和共公角C,可知△ABC相似于△DAC
从而有AD/AB=CD/AC
即AD=AB*CD/AC=8*1/根号2=4根号2