【高一数学】一道三角函数的题目》》》》已知函数f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a的最大值为1(1)求常数a的值.(2)求使f(x)>=0成立的x的取值集合.

问题描述:

【高一数学】一道三角函数的题目》》》》
已知函数f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a的最大值为1
(1)求常数a的值.
(2)求使f(x)>=0成立的x的取值集合.

(1) f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a
=(根号3)/2*sinx+1/2cosx+(根号3)/2*sinx-1/2cosx+cosx+a
=(根号3)sinx+cosx+a
=2[(根号3)/2*sinx+1/2cosx]+a
=2sin(x+π/6)+a
f(x)最大为2+a=1 ∴a= -1
(2)
f(x)≥0
2sin(x+π/6)≥1
sin(x+π/6)≥1/2
2kπ+π/6≤x+π/6≤2kπ+5π/6
2kπ≤x≤2kπ+2π/3, k∈Z

f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a=2sinxcosπ/6+cosx+a=√3sinx+cosx+a=2sin(x+π/6)+a1)因为最大值=1所以,2*1+a=1,a=-12)f(x)≥02sin(x+π/6)≥1sin(x+π/6)≥1/22kπ+π/6≤x+π/6≤2kπ+5π/62kπ≤x≤2kπ+2...