设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,
问题描述:
设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,
答
函数f(x)=(1/3)x³+(1/2)x²+2ax.求导,f'(x)=x²+x+2a.由题设可知:关于x的不等式x²+x+2a≥0.其解集M与区间(2/3,+∞)的交集非空.或者说,不等式2a≥-(x²+x)必有解在区间(2/3, +∞)内.∴问题...