如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,1)求证△ACH相似于△AFC(2)猜想AH×AF与AE×AB的数量关系并证明猜想.(3)探究:当点E位于何处时,S△AEC:S△BOD=1:并加以说明
问题描述:
如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,
1)求证△ACH相似于△AFC
(2)猜想AH×AF与AE×AB的数量关系并证明猜想.
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:并加以说明
答
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△ACH∽△AFC∴AC/AH=AF/AC∴AC²=AH×AF∴AH×AF=AE×AB(3)S...