求圆的方程一圆与y轴相切,圆心在直线x-3y=0上,且直线y=x截圆所得弦长为2又根号7,求此圆的方程.
问题描述:
求圆的方程
一圆与y轴相切,圆心在直线x-3y=0上,且直线y=x截圆所得弦长为2又根号7,求此圆的方程.
答
x*2+y*2=r*2,圆心O(0,0),半径r;
(x-a)2+(y-b)2=r2,圆心O(a,b),半径r.
确定圆方程的条件
圆的标准方程中(x-a)2+(y-b)2=r2中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.
确定圆的方程的方法和步骤
确定圆的方程主要方法是 待定系数法 ,即列出关于a、b、r的 方程组 ,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为:
根据题意,设所求的圆的标准方程(x-a)2+(y-b)2=r2;
根据已知条件,建立关于a、b、r的方程组;
解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.