求∫(cosx)^2/(sinx)^2dx
问题描述:
求∫(cosx)^2/(sinx)^2dx
答
设t=tanx,则x=arctant,dx=dt/(1+t²)
∫(cosx)^2/(sinx)^2dx=∫dt/[t²(t²+1)]
=∫[1/t²-1/(t²+1)]dt=-1/t-arctant+C,
再将t=tanx带回来,得
∫(cosx)^2/(sinx)^2dx=-1/tanx-x+C(其中C为积分常数)