(1/x-1)-(1/x+1)-(2/x^2+1)-(4/x^4+1)-(8/x^8+1)
问题描述:
(1/x-1)-(1/x+1)-(2/x^2+1)-(4/x^4+1)-(8/x^8+1)
答
(1/x-1)-(1/x+1)-(2/x^2+1)-(4/x^4+1)-(8/x^8+1)
=[(x+1)-(x-1)]/[x^2-1]-(2/x^2+1)-(4/x^4+1)-(8/x^8+1)
=2/[x^2-1]-(2/x^2+1)-(4/x^4+1)-(8/x^8+1)
=4/(x^4-1)-(4/x^4+1)-(8/x^8+1)
=8/(x^8-1)-8/(x^8+1)
=16/(x^16-1)
答
1/(x-1)-1/(x+1)-2/(x^2+1)-4/(x^4+1)-8/(x^8+1) =(x+1)/(x+1)(x-1)-(x-1)/(x+1)(x-1)-2/(x^2+1)-4/(x^4+1)-8/(x^8+1) =[(x+1)-(x-1)]/(x^2-1)-2/(x^2+1)-4/(x^4+1)-8/(x^8+1) =2/(x^2-1)-2/(x^2+1)-4/(x^4+1)-8/(x^...