如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.
问题描述:
如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长为1,求矩形EPHD的面积.
答
知识点:本题考查正方形的特殊性质,勾股定理以及正方形中的特殊三角形的应用.
(1)证明:连接AH、AF.∵ABCD是正方形,∴AD=AB,∠D=∠B=90°.∵ADHG与ABFE都是矩形,∴DH=AG,AE=BF,又∵AG=AE,∴DH=BF.在Rt△ADH与Rt△ABF中,∵AD=AB,∠D=∠B=90°,DH=BF,∴Rt△ADH≌Rt△ABF,∴AF=AH...
答案解析:(1)因为AG=AE⇒BF=DH.AB=AD,∠ABC=∠ADH⇒△ABF≌△ADH.(SAS)
(2)将△ADH绕点A顺时针旋转90°后,可得△AFH≌△AFM然后可求得结论.
(3)设BF=x,GB=y,根据线段之间的关系利用勾股定理求出xy的值.
考试点:正方形的性质;全等三角形的判定与性质;勾股定理.
知识点:本题考查正方形的特殊性质,勾股定理以及正方形中的特殊三角形的应用.