已知lim(x→正无穷) (3x-根号(ax^2-x+1))=1/6,求a的值

问题描述:

已知lim(x→正无穷) (3x-根号(ax^2-x+1))=1/6,求a的值

a=9

3x-根号(ax^2-x+1)/1 (分子分母同乘3x+根号(ax^2-x+1)
=[9x^2-(ax^2-x+1)]/[3x+根号(ax^2-x+1)]
=[(9-a)x+1-1/x]/[3x+根号(ax^2-1+1/x)]
lim(x→正无穷) (3x-根号(ax^2-x+1))=1/6
x趋近于+∞时有极限,(9-a)x必须等于零,即9-a=0,a=9
即lim(x→正无穷)=[(9-a)x+1-1/x]/[3+根号(a-1/x+1/x^2)]
=[0+1-1/x]/[3+根号(9-1/x+1/x^2)]
=1/(3+根号9)
=1/6