化简;[x+3/x+2]+[2-x/x平方-4]的值

问题描述:

化简;[x+3/x+2]+[2-x/x平方-4]的值

X^2-4=(X-2)(X+2)
所以(2-X)/(X^2-2)=-1/(X+2)
[(X+3)/(X+2)]-[1/(X+2)]=(X+2)/(X+2)=1

1

原式=(x+3)/(x+2)-(x-2)/(x+2)(x-2)
=(x+3)/(x+2)-1/(x+2)
=(x+3-1)/(x+2)
=(x+2)/(x+2)
=1

解答;
[(x+3)/(x+2)]+[(2-x)/(x平方-4)]=[(x+3)/(x+2)]-(x-2)/[(x+2)(x-2)
=(x+3)/(x+2)-1/(x+2)=(x+3-1)/(x=2)=(x=2)/(x+2)=1