已知sinα-√3cosα=(2m-3)/(2-m),求m的取值范围

问题描述:

已知sinα-√3cosα=(2m-3)/(2-m),求m的取值范围

sinα-√3cosα
=2(1/2sinα-√3/2cosα)
=2sin(a-π/3)=(2m-3)/(2-m)
所以-2≤(2m-3)/(2-m)≤2
解得m≤7/4.