数列(bn)是递增的等比数列,且b1+b3=5,b1b3=41.求数列(bn)的通项公式2.若an=log2 bn+3,求证数列(an)是等差数列3.若Cn=an*bn,求数列(Cn)的前n项和Sn
数列(bn)是递增的等比数列,且b1+b3=5,b1b3=4
1.求数列(bn)的通项公式
2.若an=log2 bn+3,求证数列(an)是等差数列
3.若Cn=an*bn,求数列(Cn)的前n项和Sn
设公比为q,b2=q*b1 ,b3=q^2*b1代入
{
b1+b3=5,b1*b3=4
}得b1=1,q=2;则{bn}的通项为bn=2^(n-1)
证明:an=log2 bn+3得an=n+2
an-a(n-1)=1即{an}是等差数列
cn=(n+2)*2^(n-1)
①Sn=3*1+4*2^1+......+(n+2)*2^(n-1)
②2sn= 3*2+4*2^2+..(n+1)*2^(n-1)+(n+2)*2^n
由②-①得:
Sn=-3+2+2^2+2^3+...+2^(n-1)+(n+2)*2^n
=-4+2^n+(n+2)*2^n=(n+3)*2^n-4
(1)b1+b3=5,b1b3=4可得b1=1,b3=4或b1=4,b3=1
因为递增,所以b1=1,b3=4,得q=2或-2,因为递增,所以q=2
bn=2^(n-1)
(2)a(n+1)-an=log2bn+1-log2bn=log2q=1,所以{an}是等差数列
(3)a1=log2b1+3=0+3=3,得an=n+2
Cn=(n+2)*2^(n-1)
等差乘等比,用错位相减
Sn=3*2^0+4*2^1+5*2^2+......+(n+2)*2^(n-1)
2Sn= 3*2^1+4*2^2+......+ (n+1)*2^(n-1)+(n+2)*2^n
两式相减
-Sn=3*2^0+{2^1+2^2+......+2^(n-1)}+(n+2)*2^n
化简后得
Sn={(n+1)*2^n}-1
设公比为q,b2=q*b1 ,b3=q^2*b1代入{b1+b3=5,b1*b3=4}得b1=1,q=2;则{bn}的通项为bn=2^(n-1)证明:an=log2 bn+3得an=n+2an-a(n-1)=1即{an}是等差数列cn=(n+2)*2^(n-1)①Sn=3*1+4*2^1+.+(n+2)*2^(n-1)...
直接求得b1=1.b3=4然后容易得到通项bn=2^(n-1).a1=3,an-an-1=log2bn+1/bn=1.至于sn=a1b1+~anbn.2sn=a1b2+anbn+1作差得sn=(n+2)2^n-(2+~+2^n-1)-3=(n+3)2^n-5