高二数学圆锥曲线(椭圆)设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意点,若角F1PF2=2θ,求证:PF1*PF2*(cosθ)^2为定值
问题描述:
高二数学圆锥曲线(椭圆)
设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意点,若角F1PF2=2θ,求证:PF1*PF2*(cosθ)^2为定值
答
cos2θ=(PF1^2+PF2^2-4c^2)/2PF1PF2
cos2θ=2cos^2θ-1
PF1PF2cos^2θ=(PF1^2+PF2^2-4c^2)/4+1/2PF1PF2
=(PF1^2+PF2^2+2PF1PF2)/4-c^2
=(PF1+PF2)^2/4-c^2
=4a^2/4-c^2
=b^2
答
cos2θ=(PF1^2+PF2^2-4c^2)/2PF1PF2
cos2θ=2cos^2θ-1
PF1PF2cos^2θ=(PF1^2+PF2^2-4c^2)/4+1/2PF1PF2
=(PF1^2+PF2^2+2PF1PF2)/4-c^2
=(PF1+PF2)^2/4-c^2
=4a^2/4-c^2
=b^2
所以PF1*PF2*(cosθ)^2为定值