1+4+9+16+……+n²=n(n+1)(2n+1)/6 怎么推导的?
1+4+9+16+……+n²=n(n+1)(2n+1)/6 怎么推导的?
1^n+2^n+3^n+4^n+…+n^n=1/6*n(n+1)(2n+1)
方法1:
利用恒等式(n+1)^3=n^3+3n^2+3n+1得:
(n+1)^3-n^3=3n^2+3n+1
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
……
3^3-2^3=3*2^2+3*2+1
2^3-1^3=3*1^2+3*1+1
相加得:
(n+1)^3-1=3(1^2+2^2+…+n^2)+3(1+2+…+n)+n
整理得:
1^n+2^n+…+n^n=1/6*n(n+1)(2n+1)
方法2:用数学归纳法证明1+4+9+……+N2=N(N+1)(2N+1)/6
1,N=1时,1=1(1+1)(2×1+1)/6=1
2,N=2时,1+4=2(2+1)(2×2+1)/6=5
3,设N=x时,公式成立,即1+4+9+……+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+……+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6也满足公式
4,综上所述,1+4+9+……+N2=N(N+1)(2N+1)/6成立,得证
(n+1)³=n³+3n²+3n+1
(n+1)³-n³=3n²+3n+1
所以
2³-1³=3*1²+3*1+1
3³-2³=3*2²+3*2+1
4³-3³=3*3²+3*3+1
.
(n+1)³-n³=3n²+3n+1
将上述n项相加得
(n+1)³-1³=3*(1²+2²+3²+...+n²)+3*(1+2+3+...n)+n
(n+1)³-1³=3*(1²+2²+3²+...+n²)+3*(1+n)*n /2 +n
(n+1)³-1³-3*(1+n)*n /2 -n=3*(1²+2²+3²+...+n²)
(n+1)³-3*(1+n)*n /2 -(1+n)=3*(1²+2²+3²+...+n²)
(n+1)[(n+1)²-3n/2-1]=3*(1²+2²+3²+...+n²)
(n+1)(n² +n/2)=3*(1²+2²+3²+...+n²)
(n+1)[n(2n+1)/2]=3*(1²+2²+3²+...+n²)
1²+2²+3²+...+n²=(n+1)n(2n+1)/6=n(n+1)(2n+1)/6