s(1+x)/1+x2)dx=?求 个积分啊
问题描述:
s(1+x)/1+x2)dx=?
求 个积分啊
答
用分部积分法
∫(1+x)/(1+x^2)dx
=∫(1+x)darctanx
=(1+x)arctanx-∫arctanxdx
∫arctanx dx
=xarctanx-∫x darctanx
=xarctanx-∫x/(1+x^2) dx
=xarctanx-∫1/2(1+x^2) dx^2
=xarctanx-(1/2)*ln(1+x^2)+C
C为常数
原式=arctanx+(1/2)*ln(1+x^2)+C