如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.

问题描述:

如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.

(1)求证:CD=CE;
(2)若BE=CE,∠B=80°,求∠DAE的度数.

(1)证明:如图,在平行四边形ABCD中,∵AD∥BC∴∠1=∠3又∵∠1=∠2,∴∠2=∠3,∴CD=CE;(2)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,又∵CD=CE,BE=CE,∴AB=BE,∴∠BAE=∠BEA.∵∠B=80°,∴∠BAE=50...
答案解析:(1)根据DE是∠ADC的角平分线得到∠1=∠2,再根据平行四边形的性质得到∠1=∠3,所以∠2=∠3,根据等角对等边即可得证;
(2)先根据BE=CE结合CD=CE得到△ABE是等腰三角形,求出∠BAE的度数,再根据平行四边形邻角互补得到∠BAD=100°,所以∠DAE可求.
考试点:平行四边形的性质.
知识点:(1)由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解;
(2)根据“BE=CE”得出AB=BE是解决问题的关键.