导数及其应用 (9 17:45:17)已知函数f(x)=ax^3+bx^2-1(a,b∈R)的图像过点P(-1,2),且在点P处的切线与直线x-3y=0垂直.试求函数f(x)的单调区间.
问题描述:
导数及其应用 (9 17:45:17)
已知函数f(x)=ax^3+bx^2-1(a,b∈R)的图像过点P(-1,2),且在点P处的切线与直线x-3y=0垂直.试求函数f(x)的单调区间.
答
斜率k=-3
对f(x)求导得3ax^2+2bx当x=-1时3a-2b=-3
f(x)过点P(-1,2)得2=-a+b-1
求得a=3,b=6
f(x)=3x^3+6x^2-1
f(x)’=9x^2+12x令导数为零求得x1=0,x2=-4/3
所以单调增区间为0到正无穷和负无穷到-4/3
减区间(0,-4/3)
答
函数的导数为3ax^2+2bx,所以在P点处的斜率为3a-2b 直线的斜率为1/3,所以(3a-2b)*1/3=-1又知道f(x)过点(-1,2),代入,所以-a+b-1=2,联立两式得a=3b=6所以f(x)=3x^3+6x^2-1导数为9x^2+12x再依次令导数为零,得单...